FOREWORD

This order prescribes procedures, defines responsibilities, and provides guidance to conduct air traffic control within Salt Lake City Tower and TRACON delegated airspace. All operational personnel are required to be familiar with the provisions of this order that pertain to their operational responsibilities and to exercise their best judgment if they encounter situations not covered by this order.

Kaylan Fullerton
Air Traffic Manager
Salt Lake ARTCC
TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION

SECTION 1. GENERAL
1.1.1. PURPOSE 1-1
1.1.2. DISTRIBUTION 1-1
1.1.3. CANCELLATION 1-1
1.1.4. EFFECTIVE DATE 1-1
1.1.5. RECOMMENDATIONS FOR PROCEDURAL CHANGES 1-1
1.1.6. WORD MEANINGS 1-1
1.1.7. POSITION IDENTIFIERS, EQUIPMENT, & ACRONYMS 1-2

CHAPTER 2. GENERAL CONTROL

SECTION 1. POSITIONS OF OPERATION
2.1.1. GENERAL 2-1
2.1.2. POSITION RELIEF BRIEFINGS 2-1
2.1.3. VFR AIRSPACE 2-2

SECTION 2. TOWER POSITIONS OF OPERATION
2.2.1. CLEARANCE DELIVERY RESPONSIBILITIES (CD) 2-3
2.2.2. GROUND CONTROL WEST/EAST CONTROL AREAS (GCW/GCE) 2-3
2.2.3. GROUND CONTROL RESPONSIBILITIES (GC): GENERAL 2-4
2.2.4. LOCAL CONTROL RESPONSIBILITIES (LC): GENERAL 2-4
2.2.5. LOCAL CONTROL WEST RESPONSIBILITIES (LCW) 2-6
2.2.6. LOCAL CONTROL CENTER RESPONSIBILITIES (LCC) 2-6
2.2.7. LOCAL CONTROL EAST RESPONSIBILITIES (LCE) 2-6

SECTION 3. TRACON POSITIONS OF OPERATION
2.3.1. TRACON RESPONSIBILITIES - GENERAL 2-8
2.3.2. OFF-LOAD PROCEDURES AND RESPONSIBILITIES 2-9
2.3.3. LAKE RESPONSIBILITIES 2-10
2.3.4. FINAL RESPONSIBILITIES 2-11
2.3.5 STOCKTON RESPONSIBILITIES 2-12

CHAPTER 3. AIRPORT TRAFFIC CONTROL

SECTION 1. GENERAL
3.1.1. HELICOPTER OPERATIONS 3-1
3.1.2. REDUCED SEPARATION ON FINAL/RUNWAY OCCUPANCY TIME 3-1

SECTION 2. OVER THE TOP (OTT) RUNWAY 32 OPERATIONS
3.2.1. DEFINITIONS 3-2
3.2.2. PROCEDURES 3-2
SECTION 3. SPECIAL VFR AT SLC AIRPORT
 3.3.1. SPECIAL VFR (SVFR) OPERATIONS 3-4
 3.3.2. CLEARANCE DELIVERY RESPONSIBILITIES 3-4
 3.3.3. LOCAL CONTROL RESPONSIBILITIES (GENERAL) 3-4
 3.3.4. LOCAL CONTROL EAST RESPONSIBILITIES (LCE) 3-4
 3.3.5. LOCAL CONTROL WEST/CENTER RESPONSIBILITIES (LCW/LCC) 3-5
 3.3.6. LAKE/STOCKTON RESPONSIBILITIES 3-5
 3.3.7. FINAL RESPONSIBILITIES 3-5

SECTION 4. LINE UP AND WAIT (LUAW)
 3.4.1. PROCEDURES 3-6

CHAPTER 4. RADAR OPERATIONS

SECTION 1. COORDINATION
 4.1.1. GENERAL 4-1
 4.1.2. ENROUTE 4-2
 4.1.3. PRE-ARRANGED COORDINATION – LCC/LCE/LCW 4-2
 4.1.4. PRE-ARRANGED COORDINATION – TRACON 4-3
 4.1.5. EMERGENCY OBSTRUCTION VIDEO MAP (EOVM) 4-4

SECTION 2. APPROACHES
 4.2.1. SIMULTANEOUS INDEPENDENT ILS PROCEDURES 4-6
 4.2.2. PARALLEL DEPENDENT ILS PROCEDURES (STAGGERED) 4-6
 4.2.3. SIMULTANEOUS INDEPENDENT APPROACHES TO WIDELY SPACED PARALLEL RUNWAYS WITHOUT FINAL MONITORS. 4-6
 4.2.4. VISUAL APPROACH PROCEDURES 4-6

SECTION 3. DEPARTURE PLANS
 4.3.1. DEPARTURE PLANS 4-8
 4.3.2. DEPARTURE PLAN DEFINITIONS 4-8
 4.3.3. DEPARTURE PROCEDURES 4-8

SECTION 4. OPPOSITE DIRECTION PROCEDURES AT SLC AIRPORT
 4.4.1 GENERAL 4-10
 4.4.2 PROCEDURES. 4-10

CHAPTER 5. MISCELLANEOUS

SECTION 1. STARS
 5.1.1. SCRATCHPAD COORDINATION 5-1
APPENDICES

APPENDIX A – TOWER TRAFFIC FLOW / CONTROL AREAS
FIGURE 1 SALT LAKE TOWER AIRSPACE A-1
FIGURE 2 SLC TOWER AIRSPACE SOUTH FLOW A-2
FIGURE 3 SLC TOWER AIRSPACE NORTH FLOW A-3
FIGURE 4 AIRSPACE DESCRIPTIONS A-4
FIGURE 5 SLC TOWER PREARRANGED COORDINATION AREA A-5
FIGURE 6 PREARRANGED AIRSPACE DESCRIPTION A-6
FIGURE 7 SLC AIRPORT RUNWAY DISTANCE REMAINING CHART A-7
FIGURE 8 SLC AIRPORT RUNWAY DISTANCE REMAINING CHART A-8
FIGURE 9 SLC AIRPORT RUNWAY DISTANCE REMAINING CHART A-9
FIGURE 10 GROUND CONTROL WEST / EAST CONTROL AREAS A-10

APPENDIX B – PRE-ARRANGED COORDINATION AREAS (TRACON)
FIGURE 1 PREARRANGED COORDINATION AREA P1 (NORTH FLOW) B-1
FIGURE 2 PREARRANGED COORDINATION AREA P2 (SOUTH FLOW) B-2
FIGURE 3 PREARRANGED COORDINATION AREA P3 (NORTH FLOW OVER THE TOP RUNWAY 32) B-3
FIGURE 4 PREARRANGED COORDINATION AREA P4 (NORTH FLOW – VFR CONDITIONS) B-4
FIGURE 5 PREARRANGED COORDINATION AREA P4 (SOUTH FLOW – VFR CONDITIONS) B-5

APPENDIX C – LAKE AIRSPACE TRAFFIC FLOW
FIGURE 1 LAKE AIRSPACE NORTH FLOW C-1
FIGURE 2 LAKE AIRSPACE SOUTH FLOW C-2

APPENDIX D – STOCTON AIRSPACE TRAFFIC FLOW
FIGURE 1 STOCKTON AIRSPACE D-1
FIGURE 2 STOCKTON AIRSPACE NORTH FLOW D-2

APPENDIX D – STOCTON AIRSPACE TRAFFIC FLOW
FIGURE 1 STOCKTON AIRSPACE NORTH FLOW D-1
FIGURE 2 STOCKTON AIRSPACE SOUTH FLOW D-2

APPENDIX E – FINAL AIRSPACE TRAFFIC FLOW
FIGURE 1 FINAL AIRSPACE NORTH FLOW E-1
FIGURE 2 FINAL AIRSPACE SOUTH FLOW E-2
APPENDIX F – CHECKLISTS
 FIGURE 1 TRACON POSITION RELIEF CHECKLIST F-1
 FIGURE 2 FLIGHT DATA / CLEARANCE DELIVERY POSITION RELIEF F-2 CHECKLIST
 FIGURE 3 GROUND CONTROL POSITION RELIEF CHECKLIST F-3
 FIGURE 4 LOCAL CONTROL POSITION RELIEF CHECKLIST F-4
 FIGURE 5 TOWER RUNWAY CHANGE CHECKLIST F-5

APPENDIX G – CLASS B AIRSPACE
 FIGURE 1 CLASS B AIRSPACE F-1

APPENDIX H – SALT LAKE CITY AIRPORT DIAGRAM
 FIGURE 1 SALT LAKE CITY AIRPORT DIAGRAM H-1

APPENDIX I – DEPARTURE SCRATCHPAD DATA
 FIGURE 1 DEPARTURE SCRATCH PAD DATA F-1

APPENDIX J – INTERNAL AND EXTERNAL GATES
 FIGURE 1 NORTH FLOW J-1
 FIGURE 2 SOUTH FLOW J-2
 FIGURE 3 INTERNAL GATE DESCRIPTIONS J-3

APPENDIX K – OVER-THE-TOP (OTT) RUNWAY 32 CORRIDOR
 FIGURE 1 OTT RUNWAY 32 CORRIDOR K-1

APPENDIX L – AIRCRAFT LENGTH AND TAXIWAY RESTRICTIONS
 FIGURE 1 AIRCRAFT LENGTH AND TAXIWAY RESTRICTIONS L-1

APPENDIX M – TOOELE ARRIVALS AND DEPARTURES
 FIGURE 1 STACO DEPARTURE AIRSPACE M-1
 FIGURE 2 STACO ILS/RNAV MISSED APPROACH AIRSPACE M-2
 FIGURE 3 COORDINATION PROCEDURES M-3
CHAPTER 1. INTRODUCTION

SECTION 1. GENERAL

1.1.1. PURPOSE.
The following responsibilities and procedures must apply unless otherwise coordinated, and are in addition to those outlined in FAA Orders and supplementary directives.

1.1.2. DISTRIBUTION.
All Salt Lake ARTCC personnel.

1.1.3 CANCELLATION.
SLC Order 7110.10A Salt Lake City Air Traffic Control dated 11/14/14 is cancelled by this order.

1.1.4 EFFECTIVE DATE
This Order (N7110.10B) is effective 07/29/16.

1.1.5 RECOMMENDATIONS FOR PROCEDURAL CHANGES.
Personnel should submit recommended changes in procedures to the Salt Lake ARTCC management.

1.1.6. WORD MEANINGS.
As used in this Order, the following words have the meaning shown:

a. “MUST”, or an action verb in the imperative sense, means a procedure is mandatory.

b. “SHOULD”, means a procedure is recommended.

c. Singular words include the plural.

d. Plural words include the singular.

e. “ALTITUDES” are in feet MSL; and, when describing airspace sectors, include altitudes stated. Ceilings are in feet above airport elevation.

g. "Unrestricted VFR departures" refers to a VFR Category III which joins the SLC IFR departure flow.

h. "Barn Transition" refers to a bi-directional route between the BARN VFR waypoint, the approach end of runway 16R, and the approach end of runway 17.

i. "I-80 Transition" refers to a bi-directional route between a point over I-80 and abeam the KSL antenna, the approach end of runway 34L, and the approach end of runway 35
1.1.7. POSITION IDENTIFIERS, EQUIPMENT, & ACRONYMS.

a. TOWER POSITIONS.

<table>
<thead>
<tr>
<th>POSITION</th>
<th>STAR SIGN</th>
<th>ID</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLEARANCE DELIVERY</td>
<td>D</td>
<td>CD</td>
<td>CD</td>
</tr>
<tr>
<td>GROUND CONTROL EAST</td>
<td>U</td>
<td>GCE</td>
<td>GC</td>
</tr>
<tr>
<td>GROUND CONTROL WEST</td>
<td>X</td>
<td>GCW</td>
<td>GC</td>
</tr>
<tr>
<td>LOCAL CONTROL CENTER</td>
<td>L</td>
<td>LCC</td>
<td>LC</td>
</tr>
<tr>
<td>LOCAL CONTROL EAST</td>
<td>E</td>
<td>LCE</td>
<td>LC</td>
</tr>
<tr>
<td>LOCAL CONTROL WEST</td>
<td>W</td>
<td>LCW</td>
<td>LC</td>
</tr>
</tbody>
</table>

Table 1-1

b. TRACON POSITIONS.

<table>
<thead>
<tr>
<th>POSITION</th>
<th>STAR SIGN</th>
<th>ID</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINAL</td>
<td>F</td>
<td>F</td>
<td>FR</td>
</tr>
<tr>
<td>LAKE</td>
<td>K</td>
<td>K</td>
<td>AR</td>
</tr>
<tr>
<td>STOCKTON</td>
<td>S</td>
<td>S</td>
<td>AR</td>
</tr>
</tbody>
</table>

Table 1-2

c. EQUIPMENT.

<table>
<thead>
<tr>
<th>ACRONYM</th>
<th>EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASDE-X</td>
<td>Airport Surface Detection Equipment-Model X</td>
</tr>
<tr>
<td>D-ATIS</td>
<td>Digital Automatic Terminal Information System</td>
</tr>
<tr>
<td>DCB</td>
<td>Display Control Bar</td>
</tr>
<tr>
<td>DCP</td>
<td>Display Control Panel</td>
</tr>
<tr>
<td>PDC</td>
<td>Pre-Departure Clearance</td>
</tr>
<tr>
<td>RID</td>
<td>Runway Incursion Device</td>
</tr>
<tr>
<td>SSA</td>
<td>STARS System Status Area</td>
</tr>
<tr>
<td>TCW</td>
<td>Terminal Control Workstation</td>
</tr>
<tr>
<td>TDLS</td>
<td>Terminal Data Link System</td>
</tr>
<tr>
<td>ACRONYM</td>
<td>ITEM / POSITION</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>41NL</td>
<td>41 North Latitude</td>
</tr>
<tr>
<td>AAR</td>
<td>Arrival Acceptance Rate</td>
</tr>
<tr>
<td>ARP</td>
<td>Airport Reference Point</td>
</tr>
<tr>
<td>ARTCC</td>
<td>Air Route Traffic Control Center</td>
</tr>
<tr>
<td>ATCT</td>
<td>Airport Traffic Control Tower</td>
</tr>
<tr>
<td>CFR</td>
<td>Call For Release</td>
</tr>
<tr>
<td>CIC</td>
<td>Controller-In-Charge</td>
</tr>
<tr>
<td>FRC</td>
<td>Full Route Clearance</td>
</tr>
<tr>
<td>LUAW</td>
<td>Line Up And Wait</td>
</tr>
<tr>
<td>S56</td>
<td>Salt Lake City TRACON</td>
</tr>
<tr>
<td>SLC</td>
<td>Salt Lake City</td>
</tr>
<tr>
<td>TCP</td>
<td>Terminal Controller Position</td>
</tr>
<tr>
<td>TU-1</td>
<td>Terminal One</td>
</tr>
<tr>
<td>TU-2</td>
<td>Terminal Two</td>
</tr>
<tr>
<td>UANG</td>
<td>Utah Air National Guard</td>
</tr>
<tr>
<td>UTTR</td>
<td>Utah Test and Training Range</td>
</tr>
<tr>
<td>UVFR</td>
<td>Unrestricted VFR</td>
</tr>
<tr>
<td>ZLC</td>
<td>Salt Lake City ARTCC</td>
</tr>
</tbody>
</table>

Table 1-4
CHAPTER 2. GENERAL CONTROL

SECTION 1. POSITIONS OF OPERATION

2.1.1. GENERAL.

a. On initial contact, the responsible radar positions must:

(1) Ensure receipt of airport arrival information.

(2) Update the data block/scratchpad to ensure it reflects the aircraft destination, approach information, the type of the aircraft and flight size, when more than one.

(3) Ensure all data block information is correct/accurate.

(4) Subsequent radar positions must enter/update the scratchpad information as necessary.

(5) If the flight is an emergency, enter “EM”. If the flight is NORDO, enter “RF”.

b. Minimum Safe Altitudes for VFR aircraft have been established (MSA video map).

c. TRACON radar displays:

(1) TRACON displays must be set to display arrival aircraft far enough out to take handoffs, or issue alternate instructions in a timely manner.

d. TOWER TDW displays, at a minimum:

(1) 7 miles from the final approach fix of the runway in use, and at least 7 miles from the departure end of the runway.

e. Class B responsibilities:

(1) TOWER will route southbound VFR aircraft (over-flight or departure) "over", "via", or "follow I-15" freeway. These aircraft will be considered in Class Bravo airspace until the affected TRACON controller advises or routes the aircraft outside of Class B airspace.

(2) TOWER will inform VFR aircraft routed northbound when they leave class Bravo airspace and to resume appropriate VFR altitudes.

2.1.2. POSITION RELIEF BRIEFINGS.

a. Use the position relief checklists (located in the SLC Position Binder) to exchange pertinent information when assuming responsibility for, or being relieved from, any operating position. An asterisk (*) in front of a checklist item indicates that the item must be verbally briefed. See Appendix F.

b. Following the sign-on and transfer of position responsibility, the relieved specialist must:
(1) Monitor the position for a minimum of 2 minutes. Air traffic awareness must be maintained during the 2-minute monitor. At the conclusion of the 2-minute interval, the relieved controller must indicate completion of the 2-minute time period.

PHRASEOLOGY: "MONITOR COMPLETE (OPERATING INITIALS)"

NOTE: When de-combining a position, the relieved controller is not required to indicate completion of the 2-minute time period.

(2) Reinforce the position relief briefing and assist the new specialist as necessary.

2.1.3. VFR AIRSPACE.

All TRACON positions are assigned the 500-foot altitude below the IFR altitude assigned except where such airspace overflies TOWER airspace.
SECTION 2. TOWER POSITIONS OF OPERATION

2.2.1. CLEARANCE DELIVERY RESPONSIBILITIES (CD – 127.3 MHZ).

a. Ensure non-PDC departures have the current ATIS information.

b. Verbally issue all amended IFR clearances.

(1) Pilots that cannot accept a SID must be issued “expect radar vectors” and an initial departure altitude of 10,000.

(2) Pilots that file an altitude below the published top altitude, and cannot accept that top altitude, must be issued the filed altitude.

EXAMPLE: “Climb via SID, except maintain FL200”

c. Issue VFR Category I and Category II aircraft a clearance out of Bravo airspace and assign 5500. Departures landing at BTF and aircraft that will remain in LCE airspace or exit LCE airspace to the east, remain on TOWER frequency.

d. Issue helicopters departing eastbound or south/north over I-15 a clearance out of Bravo airspace and assign at or below 5000 and LAKE/STOCKTON frequency.

e. Issue VFR Category III aircraft a clearance out of Bravo airspace and assign an altitude of 8,500.

f. Aircraft requesting closed traffic, issue a clearance to enter Bravo airspace and assign an altitude at or below 5,500.

g. Ensure departure frequencies, DP’s, and routings comply with new runway configuration following runway changes for clearances not yet issued.

h. When gate hold procedures are in effect, advise concerned aircraft to contact GROUND CONTROL, prior to engine start for start time.

2.2.2. GROUND CONTROL WEST/EAST CONTROL AREAS. (GCW/GCE).

a. GROUND CONTROL WEST is responsible for all taxiways between 16L/34R and 16R/34L.

b. GROUND CONTROL EAST is responsible for all taxiways east of Runway 17/35.
2.2.3. GROUND CONTROL RESPONSIBILITIES (GC): GENERAL.

a. Provide airport ground control service to aircraft on airport movement areas.

b. Advice LC when a runway exit taxiway will be blocked.

c. Ensure all departing aircraft have received the current ATIS information.

d. Verbally coordinate when an aircraft is taxied for an opposite direction or an intersection departure.

e. Check previously issued clearances for PDR/DP and frequency accuracy in the event of a runway change. Make any necessary route modifications (RM).

2.2.4. LOCAL CONTROL RESPONSIBILITIES (LC): GENERAL.

a. DEFINITION:
 (1) NORTH FLOW "straight-out" departures fly a 320 or 340 heading, or the NSIGN departure.
 (2) SOUTH FLOW "straight-out" departures fly a 160 heading or the WEVIC departure.
 (3) TURN DEPARTURES are other than straight-outs.

b. The LOCAL CONTROLLER must ensure separation between the departure and all other traffic.

c. LOCAL CONTROL must ensure coordination is effected for all aircraft exiting a runway that are unable to hold short of the parallel taxiway and remain clear of the exiting runway because of aircraft length (see Appendix L).

d. CTRD range settings:

 (1) LOCAL EAST: set the CTRD at a sufficient range to see at least 7 miles from the TOWER airspace boundary as depicted in Appendix A Figure 1.
 (2) LOCAL CENTER/LOCAL WEST: set the CTRD at a sufficient range to see at least 7 miles from the final approach fix of the runway in use and at least 7 miles from the departure end of the runway in use.

e. SOUTH or NORTH FLOW, aircraft conducting missed approach or go-around, apply prearranged coordination procedures through LOCAL CONTROL EAST VFR corridor airspace. Coordinate with the appropriate TRACON sector. When applicable, assign 8000 and issue the primary climb out or alternate climb out as appropriate. Aircraft must not turn prior to the departure end of the runway.

 (1) Primary Climb Out procedure:
 (a) NORTH FLOW: Heading 260, altitude 8,000, STOCKTON frequency.
 (b) SOUTH FLOW: Heading 295, altitude 8,000, LAKE frequency.

 (2) Alternate Climb Out procedure:
 (a) NORTH FLOW: Heading 340, altitude 8,000, LAKE frequency.
 (b) SOUTH FLOW: Heading 160, altitude 8,000, STOCKTON frequency.
NOTE: Automatic departure releases are canceled when other than the primary climb out is used.

f. Provide initial separation on all departures routed in the IFR flow.

g. Provide initial separation on VFR departures.

h. Ensure the following non-RNAV IFR / unrestricted-VFR departure headings:

(1) NORTH FLOW:
 - 340 EDEN and SANDY gates
 - 320 BIRD gate and HIF/OGD/BMC arrivals
 - 280 SUNSET and GUNNISON gate (non-RNAV)
 - 260 PANEL, PAYSON, and OQUIRRH gates

(2) SOUTH FLOW:
 - 160 BRIGHTON (turboprop aircraft filed TCH 094R), PAYSON, HOBBLE, and PANEL gates
 - 280 GUNNISON and SUNSET gates
 - 295 BIRD, EDEN, or SANDY gates and HIF/OGD/BMC arrivals.

NOTE: On a SOUTH FLOW, TOWER must ensure departures that initially turn westbound exit TOWER airspace over or south of point NICHOL. See Appendix A Figure 1.

i. Obtain a departure release on all IFR aircraft issued an initial altitude below 10,000, or aircraft not on a DP.

j. Separate IFR/VFR arrivals from the TOWER airspace boundary to the airport.

k. Tower has control to change assigned runway with arrivals established on final within the lateral boundaries of Tower airspace. TOWER has control to switch a RWY 17 arrival to RWY 16L if the arrival is 9 miles or less from the runway. When switching runways, TOWER must update the scratchpad to reflect the new runway assignment and is responsible to ensure separation from the preceding and succeeding arrivals.

l. Verify initial turn or assigned heading visually or by use of RADAR prior to communications transfer.

m. Advise "radar contact" and verify Mode C prior to communications transfer on all VFR aircraft not routed in the IFR flow. Verbally handoff a non-tagged target to the appropriate controller prior to communications transfer.

n. Issue departing VFR aircraft control instructions in accordance with LOCAL CONTROL EAST responsibilities.

o. Issue departing SVFR aircraft directional instructions in accordance with Chapter 3, Section 3.

p. Issue climb out to aircraft executing VFR practice approaches consistent with normal VFR departure routings.

q. Utilize simultaneous ILS operating procedures contained in Chapter 2 and Chapter 4.
NOTE: All LOCAL CONTROL positions may operate to the common lateral airspace boundary between SLC and S56. TRACON sectors must ensure that aircraft under their control remain the appropriate distance from TOWER airspace.

2.2.5. LOCAL CONTROL WEST RESPONSIBILITIES (LCW 132.65 MHZ).

 a. Coordinate IFR/UVFR releases with LCC. Coordinate VFR releases with LCE and LCC as appropriate.

 NOTE: LCW may operate up to the lateral boundary of the LCE VFR corridor.

 b. Control aircraft operations on Runway 16R/34L.

2.2.6. LOCAL CONTROL CENTER RESPONSIBILITIES (LCC 119.05 MHZ).

 a. Maintain control of automatic IFR/UVFR departure releases. Coordinate release of VFR departures with LCE and LCW as appropriate. LOCAL CONTROL CENTER is responsible for separation on aircraft heading 320 when turn releases have been released to LOCAL CONTROL WEST.

 b. Control aircraft operations on Runway 16L/34R.

 c. Routine use of Runway 14/32 for taxi to and from Runways 17 and 35 should be avoided.

 NOTE: A good operating practice is to advise LCE in a timely manner of known traffic parking on the east ramp.

2.2.7. LOCAL CONTROL EAST RESPONSIBILITIES (LCE 118.3 MHZ).

 a. Maintain control of Category I and II VFR releases. Coordinate IFR/UVFR releases with LCC.

 NOTE: LCE must apply appropriate separation from the airspace boundary in the corridor. LCC/LCW own the 500-foot altitudes above and below the LCE VFR corridor. LCE may operate up to the lateral boundaries of TRACON airspace.

 b. Control all aircraft traffic operating on Runways 17/35, 14/32 and all taxiways between Runways 16L/34R and 17/35.

 c. Coordinate Runway 32 departures with LCC. Coordinate Runway 32 departures with LCW if the departure is not instructed to remain east of Runway 34R.

 d. When an aircraft on taxiway K1 is holding short of Runway 35 for departure Runway 32, takeoff clearance must be issued as follows:

 "CROSS RUNWAY THREE FIVE. RUNWAY THREE TWO, CLEARED FOR TAKEOFF."

 e. Provide radar services to BTF VFR arrivals/departures to/from all directions except north. Valley will work BTF arrivals/departures to/from the north. Assign VFR BTF departures initial routes and altitudes consistent with SLC VFR flow.
f. Issue westbound VFR departures specific route instructions via the BARN transition (SOUTH FLOW) or the I-80 transition (NORTH FLOW).

g. Route VFR departures as follows:

(1) WESTBOUND, South or North flow, via south over I-15 at 5500 for fixed wing aircraft and helicopters at or below 5000.

(2) NORTHBOUND, South or North flow, via north over I-15 at 5500 or 6000 for fixed wing and helicopters at or below 5000.

(3) SOUTHBOUND, South or North flow, via south over I-15 at 5500 or 6500 for fixed wing and helicopters at or below 5000.

(4) East — Route aircraft over I-15 southbound.

h. For VFR arrivals from the east, LCE has control on contact for descent and turns toward the airport.

i. Route north/south overflights over or east of I-15 at the appropriate altitude for the VFR flow.

j. Route all other overflights into the departure flow as described in this section.
SECTION 3. TRACON POSITIONS OF OPERATION

2.3.1. TRACON POSITION RESPONSIBILITIES – GENERAL.

a. Definitions:

 (1) **VFR TRANSFER OF CONTROL** – From TRACON to LCE occurs at the airspace boundary. From LCE to TRACON occurs on contact for climb and turns away from SLCIA.

 (a) For VFR arrivals, TOWER has control on contact for descent and turns toward the airport.

 (b) Within the confines of TOWER airspace, TRACON does not have control of VFR aircraft in the west corridors (I-80 or the Barn).

b. IFR aircraft on the east downwind must remain outside of LCE airspace unless otherwise coordinated.

c. TOWER may operate to the common lateral airspace boundary between SLC and S56. TRACON sectors must ensure the aircraft under their control remain the appropriate distance from TOWER airspace.

d. When it has been determined an aircraft cleared for approach to SLC will be broken off the approach, the controller must coordinate with appropriate positions to ensure separation and transfer of control to these positions.

 (a) Except to prevent a loss of separation or during an emergency situation, aircraft broken off the final must be instructed to track the final approach course until the approach end of the runway, or fly a straight-out heading (if on a visual approach). The purpose of this restriction is, to the extent possible, keep aircraft within established procedures and traffic flow, and not create situations that may contribute to a loss of separation.

e. All aircraft flying an RNAV arrival into TRACON airspace and then vectored off of the arrival, must be re-established on the RNAV arrival prior to entering the lateral confines of FINAL airspace. This must be done in accordance with paragraphs 4.2.4.c.P1_AREA or 4.2.4.d.P2_AREA PRE-ARRANGED COORDINATION — TRACON

f. Route VFR Category I and Category II aircraft as follows:

 (1) Landing SLC/BTF:

 a. SOUTH or NORTH FLOW from the north over I-15 at 6,500. Tower has control for descent on contact.

 NOTE: *Tower is responsible for separation between the arrival and the lower northbound traffic.*

 b. SOUTH or NORTH FLOW from the south over I-15 at 6,000.

 c. SOUTH FLOW from the WEST — via "BARN" transition at 6,500.

 d. NORTH FLOW from the WEST via "I-80" transition at 6,500.

 e. SOUTH or NORTH FLOW from the east — transfer communications and control directly to TOWER
NOTE: *BTF arrivals from the north will be terminated by the TRACON.*

(2) Overflights (east side of valley):

 a. From the north transitioning southbound- via over I-15 at 6500, 7500, or 8500.

 b. From the south transitioning northbound- via over I-15 at 6000, 7000, or 8000.

NOTE: *Assign a Bravo clearance to all arrivals and overflights prior to communications transfer to the TOWER.*

 c. VFR Corridor overflights from the west will be routed into the SLC arrival flow as described in 2.3.1.f.1. above.

(3) Helicopter Operations East of I-15 — Once east of I-15, helicopters landing east of I-15 in LCE airspace are authorized to proceed on course with no altitude assignment.

2.3.2. OFF-LOAD PROCEDURES AND RESPONSIBILITIES.

a. Reasons for off-loading SLC arrival traffic to a runway other than the SOP runway. SOP runway is defined as downwind traffic to the west runway and straight-in traffic to the center or east runway. Offloads fall into 1 of 2 categories defined below:

1. Arrival is off-loaded for the purpose of maintaining separation, or the safety/integrity of the sector.

 EXAMPLE: Downwind is 20 miles long, the FINAL controller is struggling to keep up with demand, and 1 or more aircraft are off loaded to the center or east runway.

2. Arrival aircraft prefers to land on a runway other than the SOP runway.

 EXAMPLE: SWA123 is inbound via the downwind and is off-loaded to the center runway.

b. Off-loads will be routed in the following manner:

 (1) **RNAV** aircraft will fly the STAR into the downwind at 12,000 and 210 knots.

 (2) **NON-RNAV** aircraft must be assigned a downwind vector (in accordance with paragraph 4.2.4. PRE-ARRANGED COORDINATION – TRACON) into the downwind at 12,000 and 210 knots.

 c. Use “LLL”, “RRR”, or “EEE” in the scratch pad area to coordinate off-loads. Enter the data into the scratch pad area prior to the aircraft entering the lateral boundary of TRACON airspace.
2.3.3. LAKE RESPONSIBILITIES (135.5 MHZ).

a. Provide air traffic control service within delegated airspace (see Appendix C). Excluding airspace owned by Salt Lake TOWER.

b. On a NORTH FLOW operation, route aircraft departing SLC flight planned V21/V101, or landing within LAKE airspace, through the ANTELOPE gate (see Appendix J) on a heading between 320 and 340 and climbing to 10,000.

c. On a SOUTH FLOW operation, route aircraft departing SLC flight planned V21/V102, or landing within LAKE airspace through the ANTELOPE gate (see Appendix J) on a heading between 330 and 340 and climbing to 10,000.

d. Route VFR category I & II aircraft landing in, or transitioning through, TOWER airspace from the east over I-80 to I-15 descending to 9,000 within a Class B clearance.

e. The Heber Shelf line includes the appropriate lateral separation from ZLC airspace. Cross the Heber Shelf “line” at 13,000, or 1,000 feet above any other coordinated altitude.

f. Tooele airport arrivals or departures: Refer to the STACO DEPARTURE or the TVY ILS/RNAV missed approach map. Miss all depicted airspace. No additional separation is required. See Appendix M.

g. NORTH AND SOUTH FLOW: route aircraft transiting LAKE airspace (excluding SLC departures) landing north of the 41NL through the KEYHOLE gate (see Appendix J) on a heading between 330 and 340 at 12,000.

h. Unless another runway is verbally coordinated, sequence all categories of IFR aircraft and Category III VFR aircraft to Runway 16L over YYIPP and to Runway 17 over TIFUL using the following procedures and those described in Chapter 4 Section 2.

(1) Aircraft sequenced to Runway 16L or 17 must be cleared for approach with the scratchpad updated prior to entering the P3 Pre-Arranged Coordination Area (see Tables 5-1 through 5-6).

(2) Transfer communications to the TOWER prior to entering TOWER airspace, but no sooner than 7 miles from the lateral boundary of TOWER airspace, except when simultaneous approaches are in use.

NOTE: TOWER has control to switch RWY 17 arrivals to RWY 16L if the arrival is 9 miles or less from the runway.

(3) Obtain approval from the appropriate Local Control prior to authorizing an approach that will not terminate full stop. For those aircraft that will depart IFR, assign a 160 heading and maintain 8,000.

i. NORTH FLOW: Sequence all arrivals into the Runway 34L downwind in accordance with paragraph 4.2.4.e.P1 AREA (NORTH FLOW) PRE-ARRANGED COORDINATION TRACON.

All arrivals must be established at 11,000 and 210 knots prior to entering FINAL airspace.
j. Provide initial sequence of AVON/KEYHOLE gate IFR arrivals landing at HIF, OGD and BMC airports. Assign 12,000.

k. Route departures from OGD/HIF/BMC that will transit LAKE through the JEPSON gate (see Appendix J) on a heading between 240 and 250 and assigned 9,000.

l. Issue IFR clearances to aircraft off OGD airport as follows:

PHRASEOLOGY: “(ACID) CLEARED TO EMONT INTERSECTION via the EMONT (CURRENT NUMBER) DEPARTURE PROCEDURE, MAINTAIN 7,000. EXPECT FURTHER CLEARANCE AT EMONT, SQUAWK (CODE).”

WHEN ISSUING A RELEASE, ISSUE A CLEARANCE VOID TIME.

m. Issue IFR clearances to aircraft off BMC airport as follows:

PHRASEOLOGY: “(ACID) CLEARED TO THE OGDEN VORTAC via the published BRIGHAM CITY DEPARTURE PROCEDURE, MAINTAIN 6,000. EXPECT FURTHER CLEARANCE AT THE OGD VOR, SQUAWK (CODE). CONTACT SALT LAKE DEPARTURE LEAVING 5,000 ON (FREQUENCY). HOLD FOR RELEASE.”

WHEN ISSUING A RELEASE, ISSUE A CLEARANCE VOID TIME.

n. Issue IFR clearances to aircraft off BTF airport as follows:

PHRASEOLOGY: “(ACID) CLEARED TO THE WASATCH VORTAC, MAINTAIN EIGHT TOUSHAND, EXPECT FURTHER CLEARANCE AT WASATCH, DEPARTURE FREQUENCY (FREQUENCY). SQUAWK (CODE). HOLD FOR RELEASE.”

WHEN ISSUING A RELEASE, ISSUE A CLEARANCE VOID TIME.

2.3.4 FINAL RESPONSIBILITIES (125.7 MHZ).

a. Provide air traffic control service within delegated airspace (see Appendix E), excluding Salt Lake TOWER airspace.

b. NORTH FLOW: Do not descend below 11,000 until established in the downwind and abeam the approach end of the runway.

c. SOUTH FLOW: Do not descend below 11,000 until established in the downwind, and north of point NICHOL and the associated line NICHOL. See Appendix A Figure 1.

d. Unless another runway is verbally coordinated, sequence all categories of IFR aircraft and Category III VFR aircraft to Runways 34L/16R. FINAL must ensure the appropriate separation between aircraft arriving Runway 34L/16R and aircraft arriving Runways 34R/16L, 35/17 and 32/14 using the procedures described in Chapter 4 Section 2.

e. Use scratchpad information on aircraft arriving Runway 34R/16L, 35/17 and 32/14 to apply appropriate FAA Order JO 7110.65 separation from those arrival.
f. Transfer communications to the TOWER prior to entering TOWER airspace, but no sooner than 7 miles from the lateral boundary of TOWER airspace.

g. Obtain prior approval from the appropriate LOCAL CONTROL before authorizing any approach that does not intend to terminate as a full-stop. For these aircraft that will depart IFR, assign 160/340 heading, maintain 8,000.

h. When assigning the 30° turn to final, assigned aircraft speed must not exceed 210 knots.

2.3.5. STOCKTON RESPONSIBILITIES (124.3).

a. Provide air traffic control service within delegated airspace (see Appendix D) excluding Salt Lake TOWER airspace.

b. Unless another runway is verbally coordinated, sequence all categories of IFR aircraft and Category III VFR aircraft to Runways 34R/35 over BESBE/KERNN (or prior to TOWER airspace if on a visual approach or VFR to Runway 35), and to Runway 32 using the following procedures, and those described in Chapter 4 Section 2.

 (1) Arrivals to Runway 34R and 35 must be cleared for an approach with scratchpad updated prior to entering the P4 Pre-Arranged Coordination Area (See Table 5-6 through Table 5-8).

 (2) Arrivals to Runway 32 must be cleared for a visual approach with scratchpad updated prior to entering the P4 area. Arrivals to Runway 32 require prior approval from LCE.

c. Transfer communications to the TOWER prior to entering TOWER airspace, but no sooner than 7 miles from the lateral boundary of TOWER airspace.

d. Obtain approval from the appropriate Local Control prior to authorizing an approach that will not terminate full stop. For those aircraft that will depart IFR, assign a 340 heading and maintain 8,000.

e. Route VFR Category I & II aircraft landing in, or transiting through, TOWER airspace from the east over I-80 to I-15 descending to 9,000 with a Class B clearance.

f. NORTH FLOW: Sequence all arrivals into the Runway 34L downwind in accordance with paragraph 4.2.4.c.P1AREA (NORTH FLOW) PRE-ARRANGED COORDINATION — TRACON.

 All arrivals must be established at 12,000 and at 210 knots prior to entering the lateral confines of FINAL airspace. Ensure sequencing and in-trail spacing are provided with LAKE arrivals.

g. SOUTH FLOW: Sequence all arrivals into the Runway 16R downwind in accordance with paragraph 4.2.4.d.P2_AREA (SOUTH FLOW) PRE-ARRANGED COORDINATION — TRACON.

 All arrivals must be established at, or descending to, 11,000 and at 210 knots prior to entering the lateral confines of FINAL airspace.

h. Assign aircraft landing north of 41NL within terminal airspace 15,000 on a heading towards the KEYHOLE gate at 250 knots or less (see Appendix J).
i. For IFR aircraft departing U42, PVU and TVY:

 o. U42: Issue IFR clearances to RNAV-capable aircraft departing U42 as follows:

 PHRASEOLOGY: “(ACID) CLEARED TO THE FAIRFIELD VORTAC via the ITOFO (CURRENT NUMBER) DEPARTURE, MAINTAIN 9,000. EXPECT FURTHER CLEARANCE AT FAIRFIELD, DEPARTURE FREQUENCY (FREQUENCY). SQUAWK (CODE). HOLD FOR RELEASE.”

 When issuing a release, issue a clearance void time. Non-RNAV aircraft must use the published SOUTH VALLEY RGNL (U42) OBSTACLE DEPARTURE PROCEDURE.

 p. PVU: Issue IFR clearances to aircraft departing the Provo airport as follows:

 PHRASEOLOGY: “(ACID) CLEARED TO THE FAIRFIELD VORTAC VIA THE PROVO (CURRENT NUMBER) DEPARTURE, MAINTAIN 9,000, EXPECT FURTHER CLEARANCE AT FAIRFIELD, DEPARTURE FREQUENCY (FREQUENCY). SQUAWK (CODE).”

 When issuing a release, issue a clearance void time.

 q. TVY: Issue IFR clearances to aircraft departing the Tooele Airport as follows:

 PHRASEOLOGY: “(ACID) CLEARED TO THE STACO INTERSECTION VIA THE STACO (CURRENT NUMBER) DEPARTURE, MAINTAIN (altitude appropriate for departure runway). EXPECT FURTHER CLEARANCE AT STACO, SQUAWK (CODE). CONTACT SALT LAKE DEPARTURE WITHIN 3 MINUTES AFTER DEPARTURE ON (FREQUENCY). HOLD FOR RELEASE.”

 When issuing a release, issue a clearance void time.

 r. Obtain release from appropriate sectors/facilities.

 s. Issue release and clearance void time.

 j. Tooele airport arrivals or departures: Refer to the STACO DEPARTURE or the TVY ILS/RNAV missed approach map. Miss all depicted airspace. No additional separation is required. See Appendix M.
CHAPTER 3. AIRPORT TRAFFIC CONTROL.

SECTION 1. GENERAL

3.1.1. HELICOPTER OPERATIONS.

a. The helipads at SLCIA are Bravo and Foxtrot. All helipads are located on, and designated as, non-movement areas.

b. All helipads are located at least 600 feet from the edge of the closest runway and more than 200 feet from each other.

c. Helicopter hover check areas:

 (1) Primary site - northeast corner of the airport approximately 2,000 feet east of the approach end of Runway 17.

 (2) Alternate site - southeast corner of the airport approximately 1,000 feet cast of the approach end of Runway 35.

3.1.2. REDUCED SEPARATION ON FINAL/RUNWAY OCCUPANCY TIME.

Reduced separation is authorized on final on all runways, except Runway 14/32.
SECTION 2. OVER THE TOP (OTT) RUNWAY 32 OPERATIONS

3.2.1. DEFINITIONS.

a. The Over The Top (OTT) Runway 32 corridor is depicted in Appendix K.

b. The OTT 32 procedure must be provided only upon request and to pilots who are familiar with the 2100 South Street.

3.2.2. PROCEDURES.

a. STOCKTON must:

(1) Be delegated all airspace in the OTT 32 corridor.

(2) Not route VFR aircraft through the OTT corridor during this procedure.

(3) Sequence DELLE gate arrivals into the downwind at 13,000 and hand off to FINAL.

(4) OTT 32 Procedures:

 a. Establish in a downwind east of the I-15 Freeway at 11,000.

 b. Clear for a visual approach to Runway 32 and instruct aircraft to "TURN BASE LEG OVER 2100 SOUTH AT OR ABOVE 7,000."

 c. Enter "32" in the scratchpad.

b. LAKE must:

(1) Sequence aircraft participating in the OTT 32 procedure into the OTT 32 corridor and hand off to STOCKTON.

(2) Enter "X32" in the scratchpad prior to DYANN.

(3) Vector aircraft towards DOGEE on a heading between 100 and 110 at 11,000.

(4) Sequence turbo jet/prop aircraft into the west downwind descending to 11,000 once appropriate separation is established between OTT Runway 32 aircraft and non-participating turbo jet/prop aircraft. Handoff to FINAL.

(5) Not route VFR aircraft through the OTT corridor during this procedure.

(6) Be responsible for maintaining approved separation between aircraft under their control and all aircraft in the OTT corridor when using pre-arranged coordination within the P3 area (See Appendix B Figure 3).

(7) Coordinate with LOCAL CONTROL on all NSIGN departures. LAKE can:

 a. release an NSIGN departure if there is no OTT traffic, or
b. release the NSIGN departure with a restriction to "fly heading 340, maintain 10,000", or

c. hold for release

c. TOWER (LOCAL CONTROL POSITIONS) must:

(1) Cancel the automatic release of NSIGN departures.

(2) Coordinate with LAKE for release of all NSIGN departures.
SECTION 3. SPECIAL VFR AT SLC AIRPORT

3.3.1. SPECIAL VFR (SVFR) OPERATIONS.

SVFR operations at SLCIA are authorized in accordance with national directives.

3.3.2. CLEARANCE DELIVERY RESPONSIBILITIES.

CD must handle SVFR clearances as follows:

a. Issue Category I and Category II:

"CLEARED OUT OF BRAVO SURFACE AREA. MAINTAIN SPECIAL VFR CONDITIONS AT OR BELOW 6,600."

b. Issue Category III:

"CLEARED OUT OF BRAVO SURFACE AREA. MAINTAIN SPECIAL VFR CONDITIONS AT OR BELOW 8,500."

c. Issue helicopters:

"CLEARED OUT OF BRAVO SURFACE AREA. MAINTAIN SPECIAL VFR CONDITIONS AT OR BELOW 5,500."

3.3.3. LOCAL CONTROL RESPONSIBILITIES (GENERAL).

a. Issue departing Category I and II SVFR:

"EXIT BRAVO SURFACE AREA (direction) OF SALT LAKE AIRPORT, REMAIN EAST OF I-15 (or other routing)."

b. Issue departing Category III SVFR:

"EXIT BRAVO SURFACE AREA (direction that coincides with the IFR flow) OF SALT LAKE AIRPORT."

3.3.4. LOCAL CONTROL EAST RESPONSIBILITIES (LCE).

a. Maintain control of SVFR releases.

b. Issue to helicopters:

"EXIT BRAVO SURFACE AREA (direction, north-east clockwise to southeast) OF SALT LAKE AIRPORT, MAINTAIN SPECIAL VFR CONDITIONS AT OR BELOW 5,500."

c. Issue to inbound SVFR aircraft:

"CLEARED TO ENTER BRAVO SURFACE AREA (direction) OF SALT LAKE AIRPORT (routing). MAINTAIN SPECIAL VFR CONDITIONS AT OR BELOW 6,600."
3.3.5 LOCAL CONTROL WEST/ CENTER RESPONSIBILITIES (LCW/ LCC).

a. LCW must coordinate with LCE and LCC for release of SVFR aircraft.

b. LCC must coordinate with LCE and LCW for release of SVFR aircraft.

3.3.6 LAKE/STOCKTON RESPONSIBILITIES.

a. For Category I/II aircraft requesting a SVFR clearance, instruct aircraft to remain east of I-15 freeway and outside BRAVO SURFACE AREA. Aircraft will not be assigned a specific altitude.

b. For category III aircraft requesting a SVFR clearance, handoff to FINAL/LAKE/STOCKTON as appropriate.

3.3.7 FINAL RESPONSIBILITIES.

a. Sequence arriving Category III SVFR aircraft as specified below.

 (1) North flow: over FLAGG/KERNN or on a base leg south of TOWER airspace.

 (2) South flow: over YYIPP/TIFUL or on a base leg north of TOWER airspace.

b. Issue SVFR clearance:

 "CLEARED TO ENTER BRAVO SURFACE AREA (direction) OF SALT LAKE AIRPORT. MAINTAIN SPECIAL VFR CONDITIONS AT OR BELOW 6,600."
SECTION 4. LINE UP AND WAIT (LUAW)

3.4.1. PROCEDURES

a. When an aircraft has been cleared to Line Up and Wait, a landing clearance must not be issued to that runway unless all of the following conditions exist:

 a. The reported weather must be ceiling of 800 feet or more.

 b. The reported visibility must be 2 miles or more.

b. When authorizing an aircraft to line up and wait at an intersection, state the runway intersection.

PHRASEOLOGY: “RUNWAY (number) AT (taxiway designator), LINE UP AND WAIT.”

 c. There are no weather conditions that restrict the use of LUAW other than when the reported ceiling is less than 800 feet or the visibility is less than 2 miles.

 d. There are no fleet mix issues that impact the safety of LUAW operations.

 e. There are no traffic volume or complexity restrictions that impact or restrict the use of LUAW.

 f. There are no obstructions or limitations to visibility from controller to aircraft. There are no obstructions or limitations from aircraft to aircraft.
CHAPTER 4. RADAR OPERATIONS

SECTION 1. COORDINATION

4.1.1. GENERAL.

a. For TRACON sectors, a radar hand-off and communications transfer constitutes transfer of control for:

(1) 30° turns either side of course

(2) Descent/Climb

(3) Speed control +/- 30 knots

NOTE: A controller slowing an aircraft assumes responsibility for separation with succeeding aircraft.

b. TOWER has control to clear aircraft for a visual approach on a 9-mile final. This must be to the previously assigned runway and the data block must be updated.

NOTE: If you utilize the provisions of this paragraph, you are responsible for issuing all control instructions necessary to ensure separation from other aircraft and airspace. Examples of necessary control instructions include: crossing restrictions for Hill Class D airspace; temporary flight restrictions (TFR) or restricted areas; or speed restrictions. Before utilizing the provisions of this paragraph, determine if the operational advantages gained will be of greater benefit than the operational requirements it imposes.

c. IFR transfer of control from TOWER to the TRACON, and TRACON to the TOWER, occurs at the airspace boundary.

(1) EXCEPTION: LAKE/STOCKTON have control of SLC departures for turns leaving 7000 for non-heavy aircraft and leaving 7,500 for heavy jets/B757.

(2) LC must quick look FINAL, LAKE and STOCKTON sectors.

d. Automatic Departure

(1) Release is granted to Salt Lake TOWER for aircraft departing the runways in use.

(2) Release is canceled:

(a) When other than primary climb out instructions are used.

(b) During a runway change.

NOTE: CAT I and II VFR departure releases are NOT canceled during a runway change.

(c) When canceled by TRACON personnel.

e. The Local Controller who has departure releases is allowed to penetrate the other Local Controller’s airspace when using the standard departure headings/RNAV routes as stated in Chapter 2.

4.1.2. ENROUTE.

Enroute aircraft should normally be left on course at assigned altitude and coordinated individually if necessary.

4.1.3. PRE-ARRANGED COORDINATION – LCC/LCE/LCW.

a. Definition. A process by which one controller allows an aircraft to penetrate or transit another controller’s airspace in a manner that ensures standard separation without individual coordination for each aircraft.

b. General:

(1) In the event that these procedures cannot be used or are not practicable, individual coordination must be accomplished.

(2) Full data blocks must be displayed. All primary, non-Mode-C, invalid Mode-C and untracked aircraft must be coordinated on an individual basis with all effected sectors in pre-arranged coordination areas.

c. Procedures.

(1) LCC may not deviate arrival aircraft from the extended centerline of Runway 34R/16L.

(2) LCE:

(a) Is authorized to operate in LCC airspace (See Appendix A).

(b) LCE must remain over or east of runway 17 localizer (south flow) or over or east of the Runway 35 localizer (north flow).

(c) Is responsible for providing the appropriate separation from LCC traffic. LCE does not have to advise LCC what type of separation is being applied unless pilot-provided visual separation is being used and the aircraft are on converging courses.

(3) LCW:

(a) Is authorized to operate in LCW airspace (See Appendix A).

(b) Must remain over or west of the extended centerline of Runway 16R/34L.

(c) LCW is responsible for providing the appropriate separation from LCC and LCE traffic. LCW does not have to advise LCC/LCE what type of separation is being applied unless pilot-provided visual separation is being used and the aircraft are on converging courses.
d. **P4 AREA** (NORTH FLOW, VFR CONDITIONS):

(1) Pre-arranged coordination must only be utilized within the airspace depicted in Appendix B Figure 4.

(2) The P4 Area must not be utilized in IFR conditions.

(3) LCW, LCC, and LCE are authorized to operate in the P4 area.

(4) LCW, LCC, LCE must quick-look each other.

(5) LCW, LCC, and LCE must apply the required separation from any P4 Area traffic.

e. **P5 AREA** (SOUTH FLOW, VFR CONDITIONS):

(1) Pre-arranged coordination must only be utilized within the airspace depicted in Appendix B Figure 5.

(2) The P5 Area must not be utilized in IFR conditions.

(3) LCW, LCC, and LCE are authorized to operate in the P5 area.

(4) LCW, LCC, LCE must quick-look each other.

(5) LCW, LCC, and LCE must apply the required separation from any P5 Area traffic.

4.1.4. PRE-ARRANGED COORDINATION – TRACON

a. Definition: A process by which one controller allows an aircraft to penetrate or transit another controller's airspace in a manner which ensures standard separation without individual coordination for each aircraft.

b. General:

(1) In the event that these procedures cannot be used or are not practicable, individual coordination must be accomplished.

(2) The requirements and methods for displaying another sector's data blocks within a pre-coordination area are defined within each specific pre-coordination area below (AREAS P1 through P5).

(3) All primary, non-Mode-C, invalid Mode-C and untracked aircraft must be coordinated on an individual basis with all affected sectors in pre-arranged coordination areas.

c. **P1 AREA** (NORTH FLOW):

(1) Pre-arranged coordination must only be utilized within the airspace depicted in Appendix B Figure 1.

(a) STOCKTON departures are authorized to operate in the P1 area, encompassing portions of FINAL, and LAKE airspace.
(2) Separation responsibilities and restrictions:

(a) STOCKTON must not turn SLC airport departures right of the course or route assigned by the TOWER.

(b) LAKE must establish arrivals into the Runway 34L downwind at 11,000. STOCKTON must establish arrivals into the Runway 34L downwind at 12,000.

(c) NON-RNAV ARRIVAL AIRCRAFT: Once aircraft are south of the TCH 249R, LAKE, STOCKTON, and FINAL must not use a heading west of 170.

(d) RNAV ARRIVAL AIRCRAFT: LAKE and STOCKTON will ensure that aircraft are established on the appropriate STAR prior to FINAL airspace. FINAL must not use a heading west of 170 if the aircraft is vectored off the RNAV arrival.

d. P2 AREA (SOUTH FLOW):

(1) Pre-arranged coordination must only be utilized within the airspace depicted in Appendix B Figure 2.

(a) LAKE is authorized to operate in the P2 area. This airspace encompasses portions of STOCKTON and FINAL airspace.

(2) Separation responsibilities and restrictions:

(a) STOCKTON must establish SLC arrivals into the Runway 16R downwind at, or descending to, 11000.

(b) NON-RNAV ARRIVAL AIRCRAFT: Once aircraft are north of 2100 South, STOCKTON and FINAL must not use a heading west of 325. STOCKTON will ensure that RNAV aircraft are established on the appropriate STAR prior to FINAL airspace.

NOTE: STOCKTON must ensure RNAV arrivals direct MAGNE are not west of a 325 course/heading.

e. P3 AREA (NORTH FLOW, SEE SECTION 3.3 OTT RUNWAY 32 OPERATIONS):

(1) Pre-arranged coordination must only be utilized within the airspace depicted in Appendix B Figure 3.

4.1.5. EMERGENCY OBSTRUCTION VIDEO MAP (EOVM).

a. The Salt Lake City EOVM map must only be used as an advisory service, and only when a pilot has declared an emergency or a controller determines that an emergency condition exists or is imminent because of the inability of an aircraft to maintain the appropriate MEA, MOCA or MVA.

b. The EOVM has been constructed using the base contour lines on the Salt Lake City Sectional Chart at the 5,000-foot and 7,000-foot elevations, plus 200-feet for natural low obstacle growth. All elevations identified on the EOVM are rounded up to the next 100-foot increment and expressed as MSL altitudes.
c. To avoid unnecessary map clutter, the last two digits of the larger blocks of airspace are dropped (i.e., 52 = 5,200, 72 = 7,200).

d. The highest peak elevation of mountains and adjacent topography is depicted with a "dot." When spot elevations are lower than the highest elevation of a given area, they are depicted with a dot and 4 or 5 numerals (i.e., 9500, 11900).

e. Prominent man-made obstacles are depicted with a standard obstruction symbol (A) along with their elevations. Some obstructions that are lower than the elevation of a given area are depicted, especially in the vicinity of airports.

f. The shoreline of the Great Salt Lake is indicated at the 4,200-foot level, but is subject to significant changes when there is only a small change in the lake level. Utah Lake is also depicted, but the shoreline is minimally affected by changing lake levels.
SECTION 2. APPROACHES

4.2.1. SIMULTANEOUS INDEPENDENT ILS PROCEDURES.

Simultaneous independent ILS procedures between runways 16R/16L and 34L/34R are not authorized.

4.2.2. PARALLEL DEPENDENT ILS PROCEDURES (STAGGERED).

a. NORTH FLOW: STOCKTON must sequence all arrivals on the Runway 34R localizer, assigned 11,000 and 210k, and handed off to FINAL prior to PLAGE.

b. SOUTH FLOW: BEAR must sequence all arrivals on the Runway 16L localizer, assigned 11,000 and 210k, and handed off to FINAL prior to IRRON.

4.2.3. SIMULTANEOUS INDEPENDENT APPROACHES TO WIDELY SPACED PARALLEL RUNWAYS WITHOUT FINAL MONITORS.

a. RUNWAYS 16R/17

 (1) LAKE must sequence to Runway 17 and clear aircraft for the ILS approach prior to UDUZU at or above 11,000.

 (2) FINAL must sequence to Runway 16R and turn base 3 NM or more outside of RRUFF at or below 9,000 feet, or 3 NM or more outside of UFEMY at or below 8,000 feet.

b. Runway 34L/35

 (1) JORDAN must sequence to Runway 35, clear aircraft for the LDA approach prior to HLMET and cross HLMET at or above 11,000 feet.

 (2) Final must sequence to Runway 34L and turn base 4 NM or more outside of PUTER at or below 10,000 feet, or 3 NM or more outside of CAMRI at or below 9,000 feet.

c. TRACON must transfer communications to the Tower prior to entering Tower airspace.

d. Separation responsibilities:

 (1) TRACON is responsible for longitudinal and lateral separation to the Tower airspace boundary.

 (2) Tower is responsible for longitudinal and lateral separation in Tower airspace.

4.2.4. VISUAL APPROACH PROCEDURES.

a. Refer to Chapter 2, Section 3 for LAKE/FINAL/STOCKTON responsibilities.

b. SHORT APPROACHES:

 (1) DEFINITION
(a) Per this order, short approaches are defined as applicable only to Runways 16R or 34L.

(b) Short approaches are defined as any downwind arrival that turns base inside the TOWER airspace boundary.

(c) Short approaches are confined to final and LCW airspace only.

(d) Transfer of control will be on frequency change in accordance with FAA Order 7110.65.

(2) RESPONSIBILITIES:

(a) FINAL must:

1. Advice LCW of the last short approach when short approaches are terminated.

(b) LCW must:

1. Within LCW airspace, assume control on contact.

2. Advice FINAL when short approaches are no longer appropriate due to departures.
SECTION 3. DEPARTURE PLANS

4.3.1. DEPARTURE PLANS.

During certain weather conditions, specific departures can be separated by visual means.

4.3.2. DEPARTURE PLAN DEFINITIONS

a. VISUAL Departure Plan (PLAN V): Weather allows the application of visual separation until routes diverge. The following conditions must exist:

 (1) The reported weather must be ceiling of 10,000 feet or more.
 (2) The reported visibility must be 10 miles or more.

b. INSTRUMENT Departure Plan (PLAN I): Weather precludes the application of visual separation until routes diverge.

4.3.3. DEPARTURE PROCEDURES.

a. VISUAL Departure Plan: The tower will verbally coordinate pilot-provided visual separation with the TRACON. Ensure compliance with FAA Order 7110.65 paragraph 7-2-1.a.3 (pilot-maintained visual separation).

 Visual separation must not be used for aircraft departing to the same gate.

 NORTH FLOW: The following routes are authorized for pilot-maintained visual separation in trail:

 (1) PECOP departure / TWIN FALLS departure.
 (2) PECOP departure / 280° course to GUNNISON gate.
 (3) 280° course to SUNSET gate / TWIN FALLS departure.
 (4) 280° course to SUNSET gate / 280° course to GUNNISON gate.

 NOTE: Two consecutive aircraft that depart to the same gate CANNOT be separated with visual separation using the provisions FAA Order 7110.65 paragraph 7-2-1 (VISUAL SEPARATION).

 SOUTH FLOW: The following routes are authorized for pilot-maintained visual separation in trail:

 (1) PECOP departure / 280° course to GUNNISON gate.
 (2) PECOP departure / TWIN FALLS departure.
 (3) 280° course to SUNSET gate / 280° course to GUNNISON gate.
 (4) 280° course to SUNSET gate / TWIN FALLS departure.
(5) PECOP or TWIN FALLS departure / LEETZ departure.

(6) 280° course / LEETZ departure.

(7) 295° course / PECOP departure.

(8) 295° course / TWIN FALLS departure.

(9) Any 2 departures that maintain divergence.

b. INSTRUMENT DEPARTURE PLAN: All aircraft will be in trail.
SECTION 4. OPPOSITE DIRECTION PROCEDURES AT SLC AIRPORT

4.4.1. GENERAL

NOTE: The requirements in this paragraph apply only between an IFR aircraft and an IFR aircraft. Apply the proper separation standards to operations that involve an IFR aircraft and a VFR aircraft.

a. DEFINITIONS:

SAME RUNWAY: The same physical piece of concrete; 16L/34R or 16R/34L or 17/35 or 14/32.

PARALLEL RUNWAYS: At SLC, all three north/south runways are considered parallel to each other. For example, runway 17/35 is considered parallel to runways 16L/34R or 16R/34L.

CUTOFF POINTS: The opposite direction cutoff point for Salt Lake City Airport is 10-mile final.

b. GENERAL INFORMATION:

(1) SLC Tower must verbally request opposite direction departures with S56 TRACON, and S56 TRACON must verbally request opposite direction arrivals with SLC Tower.

(2) When conducting an opposite direction arrival with a circling maneuver, the aircraft is no longer considered an opposite direction operation once it commences circling.

(3) Traffic advisories must be issued to both of the opposite direction aircraft.

PHRASEOLOGY-
"OPPOSITE DIRECTION TRAFFIC (DISTANCE) MILE FINAL, (type aircraft)."
"OPPOSITE DIRECTION TRAFFIC DEPARTING RUNWAY (number), (type aircraft)."

4.4.2. PROCEDURES.

a. SAME RUNWAY OPPOSITE DIRECTION ARRIVAL/DEPARTURE:

SAME RUNWAY- ARRIVAL VERSUS OPPOSITE DIRECTION DEPARTURE: Prior to an IFR arrival reaching a 10-mile final (unless an emergency situation exists), SLC Tower must ensure the opposite direction IFR departure begins departure roll and is issued a heading that differs by at least 45° from the inbound course of the IFR arrival.

SAME RUNWAY- OPPOSITE DIRECTION ARRIVAL VERSUS DEPARTURE: Prior to an opposite direction IFR arrival reaching a 10-mile final (unless an emergency situation exists), SLC Tower must ensure the IFR departure begins departure roll and is issued a heading that differs by at least 45° from the inbound course of the opposite direction IFR arrival.

b. SAME RUNWAY OPPOSITE DIRECTION ARRIVAL/ARRIVAL:

SAME RUNWAY / ARRIVAL VERSUS ARRIVAL: The first IFR arrival must cross the landing threshold before the second IFR arrival reaches a 10-mile final
c. PARALLEL RUNWAY OPPOSITE DIRECTION OPERATIONS:

During a parallel runway opposite direction operation, ensure the IFR departure aircraft is issued a heading that turns away from the opposite direction IFR arrival that is inside the 10-mile final to the other runway.
CHAPTER 5. MISCELLANEOUS

SECTION 1. STARS

5.1.1. SCRAPHPAD COORDINATION.

a. The list of designators shown in Tables 5-1 through 5-6 is considered coordination when displayed in a scratchpad.

b. SLC APPROACHES.

(1) First Character- type of approach

<table>
<thead>
<tr>
<th>G</th>
<th>GPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>ILS</td>
</tr>
<tr>
<td>D</td>
<td>LDA/DME</td>
</tr>
<tr>
<td>T</td>
<td>TACAN</td>
</tr>
<tr>
<td>V</td>
<td>VOR</td>
</tr>
<tr>
<td>F</td>
<td>VISUAL AND FOLLOWING TRAFFIC</td>
</tr>
<tr>
<td>Y</td>
<td>VISUAL SEPARATION</td>
</tr>
</tbody>
</table>

Table 5-1

(2) Second Character- indicates runway

<table>
<thead>
<tr>
<th>L</th>
<th>RUNWAY 34L/16L</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>RUNWAY 16R/34R</td>
</tr>
<tr>
<td>7</td>
<td>RUNWAY 17</td>
</tr>
<tr>
<td>5</td>
<td>RUNWAY 35</td>
</tr>
</tbody>
</table>

Table 5-2

(3) Third Character- approach termination

<table>
<thead>
<tr>
<th>F</th>
<th>FULLSTOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>OPTION</td>
</tr>
<tr>
<td>T</td>
<td>TOUCH AND GO</td>
</tr>
<tr>
<td>W</td>
<td>LOW APPROACH (SALT LAKE ARRIVALS ONLY)</td>
</tr>
</tbody>
</table>

Table 5-3

EXAMPLE:
ILW – ILS to Runway 16L/34L, low approach.
Y5 – Visual/RNAV approach to RWY 35, maintaining visual separation with traffic ahead on final to RWY 34R.
c. IFR APPROACHES TO SATELLITE AIRPORTS.

(1) First Character(s)- type approach / recovery.

<table>
<thead>
<tr>
<th>Character(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>VISUAL</td>
</tr>
<tr>
<td>GO</td>
<td>GPS TO OGD</td>
</tr>
<tr>
<td>H</td>
<td>HIGH APPROACH</td>
</tr>
<tr>
<td>I</td>
<td>ILS</td>
</tr>
<tr>
<td>N</td>
<td>NDB TO BMC</td>
</tr>
<tr>
<td>O</td>
<td>VISUAL (OVERHEAD)</td>
</tr>
<tr>
<td>P</td>
<td>PRACTICE APPROACH</td>
</tr>
<tr>
<td>PI</td>
<td>PRACTICE ILS</td>
</tr>
<tr>
<td>R</td>
<td>RNAV TO OGD, U42, TVY, or BMC</td>
</tr>
<tr>
<td>T</td>
<td>TACAN</td>
</tr>
<tr>
<td>V</td>
<td>VOR TO OGD or PVU</td>
</tr>
</tbody>
</table>

Table 5-4

Characters may be combined as necessary (i.e., HI= high ILS).

d. Type and number of aircraft must be displayed on all departures and arrivals. The letters "HELO" will represent all types of helicopters.

e. Ensure that data blocks are updated and display current information, (i.e., arrival / departure / enroute status, runway, approach, etc.).

f. VFR destination examples.

<table>
<thead>
<tr>
<th>Character(s)</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ</td>
<td>ARIZONA</td>
</tr>
<tr>
<td>CA</td>
<td>CALIFORNIA</td>
</tr>
<tr>
<td>CTY</td>
<td>CITY</td>
</tr>
<tr>
<td>CO</td>
<td>COLORADO</td>
</tr>
<tr>
<td>FWP</td>
<td>FARNSWORTH PEAK</td>
</tr>
<tr>
<td>FPK</td>
<td>FRANCIS PEAK</td>
</tr>
<tr>
<td>ID</td>
<td>IDAHO</td>
</tr>
<tr>
<td>MT</td>
<td>MONTANA</td>
</tr>
<tr>
<td>NV</td>
<td>NEVADA</td>
</tr>
<tr>
<td>OR</td>
<td>OREGON</td>
</tr>
<tr>
<td>PC</td>
<td>PARK CITY</td>
</tr>
<tr>
<td>PAR</td>
<td>PARLEY'S CANYON</td>
</tr>
<tr>
<td>VLY</td>
<td>VALLEY</td>
</tr>
<tr>
<td>WA</td>
<td>WASHINGTON</td>
</tr>
<tr>
<td>WY</td>
<td>WYOMING</td>
</tr>
</tbody>
</table>

Table 5-5

g. EXAMPLE SCRATCHPAD DATA

<table>
<thead>
<tr>
<th>Character(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19K</td>
<td>Aircraft assigned speed (190 knots)</td>
</tr>
<tr>
<td>21S</td>
<td>Aircraft assigned speed (210 knots) and has airport in sight</td>
</tr>
<tr>
<td>A90</td>
<td>Aircraft at or above nine thousand</td>
</tr>
<tr>
<td>B90</td>
<td>Aircraft at or below nine thousand</td>
</tr>
<tr>
<td>C90</td>
<td>Aircraft climbing to nine thousand</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>D90</td>
<td>Aircraft descending to nine thousand</td>
</tr>
<tr>
<td>X14</td>
<td>Aircraft expecting Runway 14</td>
</tr>
<tr>
<td>X32</td>
<td>Aircraft expecting Runway 32</td>
</tr>
<tr>
<td>X5</td>
<td>Aircraft expecting Runway 35</td>
</tr>
<tr>
<td>X17</td>
<td>Aircraft expecting Runway 17</td>
</tr>
<tr>
<td>XL</td>
<td>Aircraft expecting Runway 34L or 16L</td>
</tr>
<tr>
<td>XR</td>
<td>Aircraft expecting Runway 34R or 16R</td>
</tr>
<tr>
<td>C</td>
<td>Aircraft requesting VFR flight following from ARTCC</td>
</tr>
<tr>
<td>FFF</td>
<td>Copter pad designator (B or F)</td>
</tr>
<tr>
<td>S</td>
<td>Aircraft has reported sighting the destination airport</td>
</tr>
<tr>
<td>HLD</td>
<td>Aircraft holding</td>
</tr>
<tr>
<td>OPA</td>
<td>Ogden Practice Area</td>
</tr>
<tr>
<td>SLC</td>
<td>Aircraft landing at SLC</td>
</tr>
<tr>
<td>TG</td>
<td>Aircraft holding</td>
</tr>
<tr>
<td>T*G</td>
<td>Touch and Go (VFR)</td>
</tr>
<tr>
<td>XOX</td>
<td>Pilot has difficulty following instructions</td>
</tr>
<tr>
<td>D5</td>
<td>Aircraft on LDA approach to Runway 35</td>
</tr>
<tr>
<td>I7</td>
<td>Aircraft on ILS approach to Runway 17</td>
</tr>
<tr>
<td>IL</td>
<td>Aircraft on ILS approach to Runway 34L or 16L</td>
</tr>
<tr>
<td>IR</td>
<td>Aircraft on ILS approach to Runway 34R or 16R</td>
</tr>
<tr>
<td>14</td>
<td>Aircraft on visual approach to Runway 14 **</td>
</tr>
<tr>
<td>32</td>
<td>Aircraft on visual approach to Runway 32 **</td>
</tr>
<tr>
<td>5</td>
<td>Aircraft on visual approach to Runway 35, and FOLLOWING the RNAV/LDA FINAL **</td>
</tr>
<tr>
<td>35</td>
<td>Aircraft on visual approach to Runway 32, and NOT following the RNAV/LDA final</td>
</tr>
<tr>
<td>7</td>
<td>Aircraft on visual approach to Runway 17 **</td>
</tr>
<tr>
<td>L</td>
<td>Aircraft on visual approach to Runway 34L or 16L **</td>
</tr>
<tr>
<td>R</td>
<td>Aircraft on visual approach to Runway 34R or 16R **</td>
</tr>
<tr>
<td>F14</td>
<td>Aircraft on visual approach and following traffic to Runway 14</td>
</tr>
<tr>
<td>F32</td>
<td>Aircraft on visual approach and following traffic to Runway 32</td>
</tr>
<tr>
<td>F5</td>
<td>Aircraft on visual approach to Runway 35, following traffic, and FOLLOWING the RNAV/LDA final.</td>
</tr>
<tr>
<td>F35</td>
<td>Aircraft on visual approach to Runway 35, following traffic, and NOT FOLLOWING the RNAV/LDA final</td>
</tr>
<tr>
<td>F7</td>
<td>Aircraft on visual approach and following traffic to Runway 17</td>
</tr>
<tr>
<td>FL</td>
<td>Aircraft on visual approach and following traffic to Runway 34L or 16L</td>
</tr>
<tr>
<td>FR</td>
<td>Aircraft on visual approach and following traffic to Runway 34R or 16R</td>
</tr>
<tr>
<td>Designator</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>G5</td>
<td>Aircraft on GPS/RNAV approach to Runway 35</td>
</tr>
<tr>
<td>G7</td>
<td>Aircraft on GPS/RNAV approach to Runway 17</td>
</tr>
<tr>
<td>GL</td>
<td>Aircraft on GPS/RNAV approach to Runway 34L or 16L</td>
</tr>
<tr>
<td>GR</td>
<td>Aircraft on GPS/RNAV approach to Runway 34R or 16R</td>
</tr>
<tr>
<td>RD5</td>
<td>Aircraft requesting LDA to Runway 35</td>
</tr>
<tr>
<td>RI7</td>
<td>Aircraft requesting ILS to Runway 17</td>
</tr>
<tr>
<td>RIL</td>
<td>Aircraft requesting ILS runway 34L or 16L</td>
</tr>
<tr>
<td>RIR</td>
<td>Aircraft requesting ILS runway 34R or 16R</td>
</tr>
<tr>
<td>32S</td>
<td>Aircraft requesting Runway 32 and has it in sight</td>
</tr>
<tr>
<td>R5S</td>
<td>Aircraft requesting Runway 35 and has it in sight</td>
</tr>
<tr>
<td>R7S</td>
<td>Aircraft requesting Runway 17 and has it in sight</td>
</tr>
<tr>
<td>RLS</td>
<td>Aircraft requesting Runway 34L or 16L and has it in sight</td>
</tr>
<tr>
<td>RRS</td>
<td>Aircraft requesting Runway 34R or 16R and has it in sight</td>
</tr>
<tr>
<td>RZ</td>
<td>Aircraft requesting SVFR into SLC</td>
</tr>
<tr>
<td>Y5</td>
<td>Aircraft on Runway 35 approach FOLLOWING the RNAV/LDA final, and maintaining visual separation with traffic ahead on Runway 34R</td>
</tr>
<tr>
<td>Y35</td>
<td>Aircraft on Runway 35 approach NOT FOLLOWING the RNAV/LDA final, and maintaining visual separation with traffic ahead on Runway 34R</td>
</tr>
<tr>
<td>YR</td>
<td>Aircraft on Runway 34R approach, and maintaining visual separation with traffic ahead on Runway 35</td>
</tr>
</tbody>
</table>

Table 5-6 – STARS Scratchpad Designators

NOTE- for VFR aircraft, this displays that the aircraft has been assigned indicated runway. This can be the second (or third) character.
APPENDIX A. TOWER TRAFFIC FLOW / CONTROL AREAS

FIGURE 1 – SALT LAKE TOWER AIRSPACE
APPENDIX A

FIGURE 2 – SLC TOWER AIRSPACE SOUTH FLOW
APPENDIX A

FIGURE 3 – SLC TOWER AIRSPACE NORTH FLOW
FIGURE 4 - AIRSPACE DESCRIPTIONS

SLC TOWER AIRSPACE. Beginning at YYIPP, east on a line parallel to the south boundary of the northern 90-100 Class “B” shelf, to the ridgeline; south along the ridgeline to a point abeam CHEVL; west along a line parallel to the north boundary of the southern 90-100 Class “B” shelf to a point 1.5 nm west of the extended centerline of RWY 34L; north on a line parallel to the extended centerline of RWY 34L to intercept the 5.8 NM arc southwest of the airport reference point (ARP); clockwise on the arc to a point 1.5 NM west of the extended centerline for RWY 16R; north on a line parallel to the extended centerline of RWY 16R to a point 1.5 NM west of the extended centerline of RWY 16R abeam YYIPP; east to point of origin.

LCC - SLC All Runway Configurations. Beginning at a point 1.5 NM west of YYIPP on the tower airspace boundary, east to a point 1.5 NM east of YYIPP on the tower airspace boundary; south along a line parallel to the extended centerlines of RWY’s 16L and 34R to a point 1.5 NM east of BESBE on the tower airspace boundary; west to a point 1.5 NM miles west of CHEVL on the tower airspace boundary; north on a line parallel to the extended centerlines of RWY’s 34R and 16L to point of origin. Excludes the BARN and I-80 VFR corridors.
Altitude: 8,500-feet and below except in excluded airspace.
NOTE: LCC may operate up to the lateral boundaries of its airspace in conjunction with LCE VFR corridor.

LCW - SLC All Runway Configurations. Beginning at a point 1.5 miles west of YYIPP on the tower airspace boundary; south along a line parallel to the extended centerlines of RWY’s 16L and 34R to a point 1.5 NM west of CHEVL on the tower airspace boundary; west along the boundary to a point 1.5 NM west of FLLAG; north along a line parallel to the extended centerline for RWY 34L to the 5.8 NM arc southwest of the airport reference point (ARP); clockwise along the arc to a point 1.5 NM west of the extended centerline of RWY 16R; north along a line parallel to the extended centerline of RWY 16R to a point 1.5 NM west of BNKER on the tower airspace boundary; east to point of origin. Excludes the BARN and I-80 VFR corridors.
Altitude: 8,500-feet and below except in excluded airspace.
NOTE: LCW may operate up to the lateral boundaries of its airspace in conjunction with LCE VFR corridor.

LCE - SLC All Runway Configurations. Beginning at a point 1.5 NM east of YYIPP, on the tower airspace boundary, clockwise along the tower airspace boundary to a point 1.5 NM east of CHEVL; north along a line parallel to the extended centerlines of RWY’s 34R/16L to point of origin including the BARN or I-80 VFR corridors depending on flow.
Altitude: 8,500-feet and below.

LCE, VFR Corridor South Flow (BARN): A corridor beginning at the common boundary between LCE and LCC airspace to the west boundary of LCW airspace, 1.5 NM either side of a line drawn through the approach ends of Runway 17 and Runway 16R then direct to the BARN.
LCE VFR Corridor North Flow (I-80): A corridor beginning at the common boundary between LCE and LCC airspace to the west boundary of LCW airspace, 1.5 NM either side of a line drawn through the approach ends of Runway 35 and Runway 34L then along the I-80 freeway to a point abeam the KSL antenna.
VFR CORRIDOR ALTITUDES: 6,500 until west of the west runway, then 5,500-feet to 6,500-feet to the west boundary of corridor airspace.
NOTE: LCE must apply appropriate separation from the airspace boundary in the corridor. LCC/LCW own the 500-foot altitudes above and below the LCE VFR corridor.
APPENDIX A

FIGURE 5 – SLC TOWER PREARRANGED COORDINATION AREA
APPENDIX A

FIGURE 6 – PREARRANGED AIRSPACE DESCRIPTION

Tower prearranged coordination area. Beginning at a point 1.5 NM west of YY1PP on the tower airspace boundary, east to a point 1.5 NM east of YY1PP on the tower airspace boundary; south along a line parallel to the extended centerlines of RWY's 16L and 34R to a point 1.5 NM east of CHEVL on the tower airspace boundary; west to a point 1.5 NM miles west of CHEVL on the tower airspace boundary; north on a line parallel to the extended centerlines of RWY's 34R and 16L to point of origin. Excludes the BARN and I-80 VFR corridors 5,500-feet to 6,000-feet.

Altitude: 8,500-feet and below except in excluded airspace.
APPENDIX A

FIGURE 7 – SLC AIRPORT RUNWAY DISTANCE REMAINING CHART
APPENDIX A

FIGURE 8 – SLC AIRPORT RUNWAY DISTANCE REMAINING CHART
APPENDIX A

FIGURE 9 – SLC AIRPORT RUNWAY DISTANCE REMAINING CHART
FIGURE 10 – GROUND CONTROL WEST / EAST CONTROL AREAS
APPENDIX B

APPENDIX B. PRE-ARRANGED COORDINATION AREAS (TRACON)

FIGURE 1 – PRE-ARRANGED COORDINATION AREA P1 (NORTH FLOW)
APPENDIX B

FIGURE 2 – PRE-ARRANGED COORDINATION AREA P2 (SOUTH FLOW)
APPENDIX B

FIGURE 3 – PRE-ARRANGED COORDINATION AREA P3 (NORTH FLOW OVER THE TOP RUNWAY 32)
APPENDIX B

FIGURE 4 – PRE-ARRANGED COORDINATION AREA P4 (NORTH FLOW – VFR CONDITIONS)
APPENDIX B

FIGURE 5 – PRE-ARRANGED COORDINATION AREA P5 (SOUTH FLOW – VFR CONDITIONS)
APPENDIX C

APPENDIX C. LAKE AIRSPACE TRAFFIC FLOW

FIGURE 1 – LAKE AIRSPACE NORTH FLOW
APPENDIX C

FIGURE 2 – LAKE AIRSPACE SOUTH FLOW
APPENDIX D

APPENDIX D. STOCKTON AIRSPACE TRAFFIC FLOW

FIGURE 1 – STOCKTON AIRSPACE NORTH FLOW
APPENDIX C

FIGURE 2 – STOCKTON AIRSPACE SOUTH FLOW
APPENDIX E

APPENDIX E. FINAL AIRSPACE TRAFFIC FLOW

FIGURE 1 – FINAL AIRSPACE NORTH FLOW
FIGURE 1 – TRACON POSITION RELIEF CHECKLIST

<table>
<thead>
<tr>
<th>SIA DATA:</th>
<th>AREA AIRPORT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WEATHER AND NOTAM INFORMATION</td>
</tr>
<tr>
<td></td>
<td>WX ADVISORIES</td>
</tr>
<tr>
<td></td>
<td>PIREPS / SIGMETS</td>
</tr>
<tr>
<td></td>
<td>FORECAST</td>
</tr>
<tr>
<td></td>
<td>WINDS</td>
</tr>
<tr>
<td></td>
<td>FLOW CONTROL</td>
</tr>
<tr>
<td></td>
<td>COORDINATION</td>
</tr>
<tr>
<td></td>
<td>AREA NOTAMS</td>
</tr>
</tbody>
</table>

* WX TRENDS: ALTIMETER TRENDS

* FLIGHT CONDITIONS

* RUNWAY STATUS: CLOSURES TYPE APPROACHES AIRSPACE CONFIGURATION

* EQUIPMENT

* COMMUNICATION STATUS AND TRAFFIC: SPECIAL ACTIVITY

POINT OUTS

HOLDING AIRCRAFT

SATELLITE OPS

NON-RADAR OPS

H/O’S IN AIRSPACE

REQUESTS

ACTIVE TRAFFIC
APPENDIX F

FIGURE 2 – FLIGHT DATA / CLEARANCE DELIVERY POSITION RELIEF CHECKLIST

<table>
<thead>
<tr>
<th>STATUS INFORMATION AREAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQUIPMENT</td>
</tr>
<tr>
<td>AIRPORT CONDITIONS / STATUS</td>
</tr>
<tr>
<td>AIRPORT ACTIVITIES:</td>
</tr>
<tr>
<td>closures, de-icing, construction, etc.</td>
</tr>
<tr>
<td>* ALTIMETER TRENDS</td>
</tr>
<tr>
<td>WEATHER TRENDS and FORECAST</td>
</tr>
<tr>
<td>FLOW CONTROL</td>
</tr>
<tr>
<td>SPECIAL ACTIVITIES</td>
</tr>
<tr>
<td>NOTAMS, flight checks, restricted areas in use, new procedures, etc.</td>
</tr>
<tr>
<td>SPECIAL INSTRUCTIONS / RESTRICTIONS</td>
</tr>
<tr>
<td>TRAINING IN PROGRESS</td>
</tr>
<tr>
<td>* VERBALLY STATE RUNWAY STATUS:</td>
</tr>
<tr>
<td>closed, unavailable or occupied.</td>
</tr>
<tr>
<td>* TYPE APPROACHES IN USE</td>
</tr>
<tr>
<td>* AIRSPACE CONFIGURATION</td>
</tr>
<tr>
<td>COMMUNICATION STATUS AND TRAFFIC:</td>
</tr>
<tr>
<td>special activity</td>
</tr>
<tr>
<td>point outs</td>
</tr>
<tr>
<td>aircraft standing by</td>
</tr>
<tr>
<td>coordination with others</td>
</tr>
<tr>
<td>special problems</td>
</tr>
</tbody>
</table>
FIGURE 3 – GROUND CONTROL POSITION RELIEF CHECKLIST

<table>
<thead>
<tr>
<th>STATUS INFORMATION AREAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>EQUIPMENT</td>
</tr>
<tr>
<td>AIRPORT CONDITIONS / STATUS</td>
</tr>
<tr>
<td>AIRPORT ACTIVITIES: closures, de-icing, construction, etc.</td>
</tr>
<tr>
<td>* ALTIMETER TRENDS</td>
</tr>
<tr>
<td>WEATHER TRENDS and FORECAST</td>
</tr>
<tr>
<td>* POSITION STATUS: combined / split</td>
</tr>
<tr>
<td>FLOW CONTROL</td>
</tr>
<tr>
<td>SPECIAL ACTIVITIES emergencies, new procedures, etc.</td>
</tr>
<tr>
<td>SPECIAL INSTRUCTIONS / RESTRICTIONS</td>
</tr>
<tr>
<td>TRAINING IN PROGRESS</td>
</tr>
<tr>
<td>* VERBALLY STATE RUNWAY STATUS: closed, unavailable or occupied.</td>
</tr>
<tr>
<td>* TYPE APPROACHES IN USE</td>
</tr>
<tr>
<td>* AIRSPACE CONFIGURATION</td>
</tr>
<tr>
<td>CALL COMMUNICATION STATUS AND TRAFFIC: special activity</td>
</tr>
<tr>
<td>* point outs</td>
</tr>
<tr>
<td>aircraft standing by</td>
</tr>
<tr>
<td>coordination with others</td>
</tr>
<tr>
<td>special problems</td>
</tr>
</tbody>
</table>
APPENDIX F

FIGURE 4 – LOCAL CONTROL POSITION RELIEF CHECKLIST

<table>
<thead>
<tr>
<th>STATUS INFORMATION AREAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQUIPMENT</td>
</tr>
<tr>
<td>AIRPORT CONDITIONS</td>
</tr>
<tr>
<td>AIRPORT ACTIVITIES:</td>
</tr>
<tr>
<td>closures, de-icing,</td>
</tr>
<tr>
<td>construction, etc.</td>
</tr>
<tr>
<td>* ALTIMETER TRENDS</td>
</tr>
<tr>
<td>WEATHER TRENDS and FORECAST</td>
</tr>
<tr>
<td>* POSITION STATUS:</td>
</tr>
<tr>
<td>combined / split</td>
</tr>
<tr>
<td>* FLOW CONTROL – RELEASES</td>
</tr>
</tbody>
</table>

SPECIAL ACTIVITIES
- NOTAMS, flight checks, emergencies, etc.

SPECIAL INSTRUCTIONS / RESTRICTIONS

TRAINING IN PROGRESS

* VERBALLY STATE RUNWAY STATUS:
 - closed, unavailable or occupied.

* TYPE APPROACHES IN USE

* AIRSPACE CONFIGURATION

* RELEASES

* LUAW

COMMUNICATION STATUS AND TRAFFIC:
- special activity
- point outs
- aircraft standing by
- coordination with others
- special problems
FIGURE 5 – TOWER RUNWAY CHANGE CHECKLIST

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COORDINATE WITH TOWER POSITIONS.</td>
</tr>
<tr>
<td>2</td>
<td>DETERMINE LAST IFR DEPARTURE.</td>
</tr>
<tr>
<td>3</td>
<td>CANCEL AUTO-RELEASES.</td>
</tr>
<tr>
<td>4</td>
<td>DETERMINE LAST IFR/VFR ARRIVAL.</td>
</tr>
<tr>
<td>5</td>
<td>SECURE AUTO-RELEASES.</td>
</tr>
</tbody>
</table>
APPENDIX G

APPENDIX G. CLASS B AIRSPACE

FIGURE 1 – CLASS B AIRSPACE
APPENDIX H

APPENDIX H. SALT LAKE CITY AIRPORT DIAGRAM

FIGURE 1 – SALT LAKE CITY AIRPORT DIAGRAM
APPENDIX I

APPENDIX I. DEPARTURE SCRATCH PAD DATA

FIGURE 1 – DEPARTURE SCRATCH PAD DATA

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>AIRPORT/FIX/ROUTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEZ</td>
<td>DEZRT...TIPTN</td>
</tr>
<tr>
<td>E01</td>
<td>V101 EAST</td>
</tr>
<tr>
<td>E06</td>
<td>V6 EAST</td>
</tr>
<tr>
<td>E32</td>
<td>V32 EAST</td>
</tr>
<tr>
<td>E84</td>
<td>TCH.V484.MTU</td>
</tr>
<tr>
<td>EDN</td>
<td>TCH005R</td>
</tr>
<tr>
<td>EMU</td>
<td>EDETH (MUSAW)</td>
</tr>
<tr>
<td>F17</td>
<td>TCH..FFU..FFU170049</td>
</tr>
<tr>
<td>FFD</td>
<td>FAIRFIELD DEPARTURE</td>
</tr>
<tr>
<td>FFH</td>
<td>FFU133..HVE320</td>
</tr>
<tr>
<td>FPU</td>
<td>FAIRFIELD VORTAC</td>
</tr>
<tr>
<td>G84</td>
<td>V484 NORTHWEST</td>
</tr>
<tr>
<td>J12</td>
<td>J12 NORTHWEST</td>
</tr>
<tr>
<td>J15</td>
<td>J15 NORTHWEST</td>
</tr>
<tr>
<td>E54</td>
<td>J154 EAST</td>
</tr>
<tr>
<td>E56</td>
<td>J56 EAST</td>
</tr>
<tr>
<td>E73</td>
<td>J173 EAST</td>
</tr>
<tr>
<td>LCH</td>
<td>LEETZ (CHEDO)</td>
</tr>
<tr>
<td>LDO</td>
<td>LEETZ (DOCKT)</td>
</tr>
<tr>
<td>LGU</td>
<td>V21 NORTH</td>
</tr>
<tr>
<td>LMK</td>
<td>LEETZ (MUCKI)</td>
</tr>
<tr>
<td>LMR</td>
<td>LEETZ (MURFI)</td>
</tr>
<tr>
<td>LPL</td>
<td>LEETZ (PLOGE)</td>
</tr>
</tbody>
</table>
APPENDIX J

APPENDIX J. INTERNAL AND EXTERNAL GATES

FIGURE 1 – NORTH FLOW
APPENDIX J

FIGURE 2 – SOUTH FLOW
APPENDIX J

FIGURE 3 – INTERNAL GATE DESCRIPTIONS

A= KEYHOLE:

NORTH FLOW- That airspace on 41NL from a point 13 NM west of the Runway 16R final to a point along the 41NL at the S56/ZLC boundary. Unless otherwise coordinated, aircraft routed through KEYHOLE northbound shall be assigned a heading from 330 to 340.

SOUTH FLOW- That airspace on 41NL from a point 16 NM west of the Runway 16R final to a point along the 4INL at the S56/ZLC boundary. Unless otherwise coordinated, aircraft routed through KEYHOLE northbound shall be assigned a heading from 330 to 340.

B= JEPSON:

That airspace on a line from the southeast corner of the 9000 MVA that overlies Promontory Point to a point 160° and 5 miles to the south. Unless otherwise coordinated, aircraft routed through JEPSON westbound shall be assigned a heading from 240 to 250.

D= ANTELOPE:

NORTH FLOW- That airspace on 41NL starting at a point 1.5 NM west of the Runway 16R final to a point along the 41NL 9.5 NM west of start. Unless otherwise coordinated, aircraft routed through ANTELOPE northbound shall be assigned a heading from 320 to 340.

SOUTH FLOW- That airspace on 41NL starting at a point 7 NM west of the Runway 16R final to a point along the 41NL 16 NM west of start. Unless otherwise coordinated, aircraft routed through ANTELOPE northbound shall be assigned a heading from 330 to 340.
APPENDIX K

APPENDIX K. OVER-THE-TOP (OTT) RUNWAY 32 CORRIDOR

FIGURE 1 – OTT RUNWAY 32 CORRIDOR
APPENDIX L

APPENDIX L. AIRCRAFT LENGTH AND TAXIWAY RESTRICTIONS

FAA Order 7210.3 states, “Air Traffic Managers shall develop a facility directive which specifically defines the responsibilities of local and ground control to ensure that coordination is accomplished to accommodate an aircraft exiting the runway which must enter another taxiway/runway/ramp area, other than the one used to exit the landing runway, in order to taxi clear of the runway.”

SLC Order 7110.10 states that: “Local control shall ensure coordination is effected for all aircraft exiting a runway that are unable to hold short of the parallel taxiway and remain clear of the exiting runway because of aircraft length.” The charts below depict distances between the runway hold short line and the edge line of the closest parallel taxiway.

<table>
<thead>
<tr>
<th>TWY</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1</td>
<td>82</td>
</tr>
<tr>
<td>K2</td>
<td>64</td>
</tr>
<tr>
<td>K3</td>
<td>N/A</td>
</tr>
<tr>
<td>K4</td>
<td>245</td>
</tr>
<tr>
<td>K5</td>
<td>269</td>
</tr>
<tr>
<td>K6</td>
<td>364</td>
</tr>
<tr>
<td>K7</td>
<td>243</td>
</tr>
<tr>
<td>K8</td>
<td>245</td>
</tr>
<tr>
<td>K9</td>
<td>138</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TWY</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>199</td>
</tr>
<tr>
<td>H2</td>
<td>265</td>
</tr>
<tr>
<td>H3</td>
<td>504</td>
</tr>
<tr>
<td>H4</td>
<td>503</td>
</tr>
<tr>
<td>H5</td>
<td>257</td>
</tr>
<tr>
<td>H6</td>
<td>507</td>
</tr>
<tr>
<td>H7</td>
<td>431</td>
</tr>
<tr>
<td>H8</td>
<td>510</td>
</tr>
<tr>
<td>H9</td>
<td>501</td>
</tr>
<tr>
<td>H10</td>
<td>258</td>
</tr>
<tr>
<td>H11,H12</td>
<td>260</td>
</tr>
<tr>
<td>H13</td>
<td>156</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TWY</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>92</td>
</tr>
<tr>
<td>A2</td>
<td>92</td>
</tr>
<tr>
<td>A3</td>
<td>238</td>
</tr>
<tr>
<td>A4</td>
<td>386</td>
</tr>
<tr>
<td>A5</td>
<td>390</td>
</tr>
<tr>
<td>A6</td>
<td>285</td>
</tr>
<tr>
<td>A7</td>
<td>282</td>
</tr>
<tr>
<td>A8</td>
<td>282</td>
</tr>
<tr>
<td>A9</td>
<td>282</td>
</tr>
<tr>
<td>A10</td>
<td>243</td>
</tr>
<tr>
<td>A11</td>
<td>243</td>
</tr>
</tbody>
</table>
The information below depicts the taxiways at which specific aircraft unable to clear the hold line and hold short of the parallel taxiway.

<table>
<thead>
<tr>
<th>Taxiway Restrictions</th>
<th>Type Aircraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1</td>
<td>Aircraft LARGER than E-120 (i.e. C-130, GLEX)</td>
</tr>
<tr>
<td>K2</td>
<td>Aircraft LARGER than B1900 (i.e. C-130, H4T, CL60, GLEX, GLF2/3/4/5)</td>
</tr>
<tr>
<td>K4, K7, K8, K9</td>
<td>B747</td>
</tr>
<tr>
<td>H1</td>
<td>B747, B767, B777, MD-11, A330, A340, A380, AN-124, AN-225</td>
</tr>
<tr>
<td>H2, H5, H10, H11, H12</td>
<td>AN-225</td>
</tr>
<tr>
<td>H13</td>
<td>B-747, B757, B767, B777, B787, DC-10, MD-11, A300, A330, A340, A350, A380, AN-124, AN-225</td>
</tr>
<tr>
<td>A1, A2</td>
<td>Aircraft LARGER than E-120 (i.e. C-130, GLEX)</td>
</tr>
<tr>
<td>A3</td>
<td>B747, B777, A340, A380, AN-225</td>
</tr>
<tr>
<td>A10, A11</td>
<td>B747, A340, AN-225</td>
</tr>
</tbody>
</table>
APPENDIX M

APPENDIX M. TOOELE ARRIVALS AND DEPARTURES

FIGURE 1 – STACO DEPARTURE AIRSPACE
APPENDIX M

FIGURE 2 – ILS/RNAV MISSED APPROACH AIRSPACE
APPENDIX M

FIGURE 3 – COORDINATION PROCEDURES

A. STACO DEPARTURE:

STOCKTON
STOCKTON coordinates with LAKE. Coordinate with CENTER as appropriate.

LAKE
LAKE coordinates with the TOWER and when able, cancels turn automatics at Salt Lake.

B. ILS/RNAV APPROACH:

STOCKTON
STOCKTON coordinates with LAKE.

LAKE
LAKE coordinates with the TOWER and when able, cancels turn automatics at Salt Lake.